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Abstract

The present paper studies a quantitative version of the transversality theorem. More
precisely, given a continuous function g ∈ C([0, 1]d,Rm) and a global smooth manifold
W ⊂ Rm of dimension p, we establish a quantitative estimate on the (d+p−m)-dimensional
Hausdorff measure of the set Zg

W =
{
x ∈ [0, 1]d : g(x) ∈W

}
. The obtained result is ap-

plied to quantify the total number of shock curves in weak entropy solutions to scalar
conservation laws with uniformly convex fluxes in one space dimension.
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1 Introduction

Given two smooth manifolds X of dimension d and Y of dimension m, let g : X → Y be a
C1 map. For any smooth submanifold W of Y , we say that function g is transverse to W and
write g >∩W if

(dg)p(TpX) + Tg(p)(W ) = Tg(p)(Y ) for all p ∈ g−1(W ).

The transversality lemma, which is the key to proving Thom’s transversality theorem [6],
shows that the set of transversal maps is dense [5]. In particular, given a smooth manifold
W ⊂ Rm of dimension p, for any continuous function g : [0, 1]d 7→ Rm and any ε > 0, there
exists a C1 function gε : [0, 1]d → Rm such that

‖gε − g‖C1 ≤ ε and gε >∩W.

For every h ∈ C
(
[0, 1]d,Rm

)
, consider the set

ZhW :=
{
x ∈ [0, 1]d : h(x) ∈W

}
. (1.1)

If h is smooth and transversal to W , then ZhW is a (d+ p−m)-dimensional smooth manifold.
Hence, its (d + p −m)-dimensional Hausdorff measure is finite. In this paper, we perform a
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quantitative analysis of the measure of ZgW . Namely, how small can we make this measure,
by an ε-perturbation of g? To formulate more precisely our result, given g ∈ C([0, 1]d,Rm),
define

N g
W (ε) := inf

‖h−g‖C0≤ε
Hd+p−m

(
ZhW

)
to be the smallest (d+p−m)-Hausdorff measure of ZhW among all functions h ∈ C

(
[0, 1]d,Rm

)
with ‖h − g‖C0 ≤ ε. Relying on the concept of Kolmogorov ε-entropy [17], we will establish
an upper bound on the number N g

W (ε), for a general continuous function g : [0, 1]d → Rm.
The result can be extended to the case of continuous functions g : X → Y where X,Y are
global smooth manifolds and W ⊆ Y is a smooth submanifold of Y . Specially, we obtain the
following estimate for a class of Hölder continuous functions.

Theorem 1.1 Assume that p + d ≥ m and g ∈ Cα([0, 1]d,Rm) is Hölder continuous with
exponent α ∈ (0, 1]. Then for every ε > 0 sufficiently small, it holds

N g
W (ε) ≤ CW ·

(
‖g‖C0,α
ε

)m−p
α

(1.2)

where the constant CW > 0 depends only on W and ‖g‖C0,α is the Hölder norm of g.

In the scalar case (d = m = 1), the blow up rate
(

1
ε

)m−p
α with respect to ε is shown to be

the best bound in terms of power function in Example 3.4. For the multi-dimensional cases
(d ≥ 2), this should be still true but the situation becomes considerably more technical. We
leave this open.

In the second part of the paper, we give an application to conservation laws. For several
classes of hyperbolic PDEs, one can prove that there exists an open dense set of initial data
for which the solution develops at most a finite number of singularities [7, 11, 12, 13]. A
natural question is to provide a quantitative estimate on this number. For example, consider
the scalar conservation laws in one space dimension

ut(t, x) + f
(
u(t, x)

)
x

= 0 (t, x) ∈ [0,∞[×R, (1.3)

with strictly convex flux f . In this case, there is a connection between (1.3) and the Hamilton-
Jacobi equation which induces an explicit representation of solutions. Using this representa-
tion, Oleinik [18, 19, 20] shows that solutions of (1.3) are continuous, except on the union of
an at most countable set of shock curves. Analogous results also established for solutions to
genuinely nonlinear hyperbolic systems of conservation laws in [8, 14, 15, 16]. The structure
and smoothness of solutions to (1.3) were studied in [11], using the concept of generalized
characteristics. For a dense set of initial data, a stronger regularity property holds. Namely,
the total number of shock curves is finite [13]. Here, in the spirit of metric entropy which was
used in the study of the compactness estimates for solution sets [2, 3, 4, 9], we shall provide
quantitative estimates on the number of shock curves in an entropy weak solution u to (1.3),
which is a weak solution of (1.3) in the sense of distributions and satisfies an entropy criterion
for admissibility

u(t, x−) ≥ u(t, x+) for a.e. t > 0, x ∈ R.

More precisely, assuming that f ∈ C4(R) is uniformly convex, i.e.,

f ′′(u) ≥ λ > 0 for all u ∈ R. (1.4)
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For any given ε > 0 and ū ∈ L1(R) with a compact support, we seek a perturbed initial datum
v̄ ∈ C3

c (R), with ‖v̄ − ū‖L1 ≤ ε, such that the solution v = v(t, x) of (1.3) with v(0, ·) = v̄ has
the total number of shocks bounded in terms of ε−1. The next simplified theorem provides an
upper bound on this number of shocks.

Theorem 1.2 Let the flux function f be C4-smooth and satisfy (1.4). Given constants R, V >
0, assume that ū ∈ L1(R) satisfies

Supp(ū) ⊆ [−R,R] and Tot.Var.{ū} < V. (1.5)

Then, for some constant C, the following holds. For every ε > 0 sufficiently small, there exists
v̄ ∈ C3(R) with Supp(v̄) ⊆ [−2R, 2R] and ‖v̄ − ū‖L1 ≤ ε, such that the entropy weak solution
v = v(t, x) of (1.3) with initial datum v(0, ·) = v̄ satisfies

[Total number of shock curves of v] ≤ C

λ
· R

4V 5

ε4
+ 4. (1.6)

The proof of Theorem 1.2 relies on Theorem 1.1 and the observation that the total number of
shock curves arising in the solution v is bounded by the total number of inflection points of
the function x 7→ f ′

(
v̄(x)

)
. Finally, we remark that the constant C is explicitly computed in

(4.38) and the result is proved for C3-smooth f in Theorem 4.3.

The remainder of this paper is organized as follows. In Section 2, we recall basic concepts on
the inverse of the minimal modulus of continuity and Komolgorov ε-entropy, and also include
a necessary result on the partition of the unit cube into polytopes in Rd. Section 3 contains
a general result on an upper estimate for N g

W (ε), while Section 4 provides a brief review on
the scalar conservation laws with uniformly convex fluxes in one space dimension and extends
Theorem 1.2 to the case of C3-smooth f .

2 Notations and preliminaries

Let d ≥ 1 be an integer and D be a measurable subset of Rd. Throughout the paper we shall
denote by:

• | · | the Euclidean norm of Rd;

• Bd(a, r) = {x ∈ R : |x− a| < r} the ball of radius r centered at a ∈ Rd and

Bd(U, r) =
⋃
a∈U

Bd(a, r) for all r ≥ 0, U ⊆ Rd;

• Int(D) the interior of D;

• Diam(D) = supx,y∈D |x− y|, the diameter of the set D in Rd;

• χD =


1 if x ∈ D

0 if x ∈ Rd\D
the characteristic function of a subset D in Rd;
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• Hs(A) the s-dimensional Hausdorff measure of A;

• #(S) the number of elements of any finite set S;

• L1(R) the Lebesgue space of all (equivalence classes of) summable functions on R,
equipped with the usual norm ‖ · ‖L1 ;

• L∞(R) the space of all essentially bounded functions on R, equipped with the usual
norm ‖ · ‖L∞ ;

• Cn(R), space of smooth functions on R having continuous derivatives f ′, f ′′, . . . , f (n),
equipped with the usual norm ‖ · ‖Cn ;

• Tot.Var.{g, I} total variation of g over the open interval I in R;

• Supp(u) the essential support of a function u ∈ L∞(R);

• bxc := max{z ∈ Z : z ≤ x} the integer part of x.

In order to obtain the estimate (1.2) for general continuous functions, let us introduce the
inverse of the minimal modulus of a continuity.

Definition 2.1 Given subsets U ⊆ Rd and V ⊆ Rm, let h : U → V be continuous. The
minimal modulus of continuity of h is given by

ωh(δ) = sup
x,y∈U,|x−y|≤δ

|h(y)− h(x)| for all δ ∈ [0,diam(U)]. (2.7)

The inverse of the minimal modulus of continuity of h is the map s 7→ Ψh(s) is defined by

Ψh(s) := sup {δ ≥ 0 : |h(x)− h(y)| ≤ s for all |x− y| ≤ δ, x, y ∈ U} (2.8)

for all s ≥ 0.

From the above definition, it is clear that Ψh(s) = ∞ for all s ∈ [Mh,∞[ with Mh :=
supx,y∈U |h(x)− h(y)|. In particular, if h is a constant function then Ψh(s) =∞ for all s ≥ 0.
Otherwise, by the continuity of h, it holds

Ψh(0) = 0 and 0 < Ψh(s) ≤ diam(U) for all s ∈]0,Mh[.

Moreover, Ψh(·) : [0,∞[→ [0,∞[ is increasing and superadditive

Ψh(s1 + s2) ≥ Ψh(s1) + Ψh(s2) for all s1, s2 ≥ 0.

If the map δ 7→ ωh(δ) is strictly increasing in [0, diam(U)[ then Ψh is the inverse of ωh, i.e.,

Ψh(s) = ω−1
h (s) for all s ∈ [0,Mh[.

In the case that h is Hölder continuous with an exponential α ∈ (0, 1], for every s > 0 it holds

Ψh(s) ≥
(

s

‖h‖C0,α

) 1
α

with ‖h‖C0,α = sup
x,y∈U,x 6=y

|h(x)− h(y)|
|x− y|α

. (2.9)

Toward a sharp estimate on N g
W (ε), we recall the concept of Kolmogorov ε-entropy [17] which

has been studied extensively in a variety of literature and disciplines. It plays a central
role in various areas of information theory and statistics, including nonparametric function
estimation, density information, empirical processes and machine learning. It provides a tool
for characterizing the rate of mixing of sets of small measure.
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Definition 2.2 Given a metric space (E, ρ), let K be a totally bounded subset of E. For any
ε > 0, let Nε(K|E) be the minimal number of sets in a covering of K by subsets of E having
diameter no larger than 2ε. Then the ε-entropy of K is defined as

Hε(K|E) := log2 Nε(K|E).

To complete this section, let us prove a simple lemma of the decomposition of a unit cube in
Rd which will be used in the proof of Theorem 3.2.

Lemma 2.3 Let d = [0, 1]d be a unit cube in Rd. Then, d can be decomposed into 2d−1d!
polytopes ∆d

k in Rd such that ∆d
k has (d+ 1) vertices for k ∈

{
0, 1, . . . , 2d−1d!− 1

}
.

Proof. The decomposition of d can be done by using the induction process:

• If d = 1 then 1 is an interval [0, 1].

• For d ≥ 2, assume that d−1 can be decomposed into 2d−2(d − 1)! polytopes ∆d−1
` in

Rd−1 such that ∆d−1
` has d vertices for ` ∈

{
0, 1, . . . , 2d−2(d− 1)!− 1

}
. Observe that d

has 2d faces d−1
h = ∂ d

h for h ∈ {0, 1, . . . , 2d−1} which are Rd−1-cubes of side length 1.

Thus, for each h ∈ {0, 1, . . . , 2d− 1}, we can partition d−1
h into 2d−2(d− 1)! polytopes

∆d−1
h,` such that ∆d−1

h,` has d vertices for ` ∈
{

0, 1, . . . , 2d−2(d− 1)!− 1
}

. Then d can be

partition into 2d−1d! polytopes ∆d
k for k =

{
1, 2, . . . , 2d−1d!

}
such that

∆d
k =

{
θc+ (1− θ) · y : θ ∈ [0, 1], y ∈ ∆d−1

h,`

}
, k = h · 2d−2(d− 1)! + `,

with c being the center of d.

The proof is complete.

3 Upper estimates on N g
W (ε)

In this section, we provide a quantitative study on the Hausdorff measure of ZgW for gen-
eral continuous functions g ∈ C

(
[0, 1]d,Rm

)
and W ⊆ Rm being a global C1 manifold with

dim(W ) = p. More precisely, recalling the definition of ZhW in (1.1), we establish an upper
bound for

N g
W (ε) := inf

h∈C([0,1]d,Rm),‖h−g‖C0≤ε
Hd+p−m

(
ZhW

)
. (3.10)

We shall assume that there exists a C1 diffeomorphism ϕ : Bm(W, r) → ϕ(Bm(W, r)) ⊆ Rm
with ϕ(W ) ⊆ Rp × {0} ⊆ Rp × Rm−p for some r > 0. Recalling (2.8), we denote by

γW :=
λ1

λ2
, `(s) =

1

2
√
d
·Ψg (γW · s) for all s > 0 (3.11)

with

0 < λ1 := inf
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|

≤ sup
x6=y

|ϕ(x)− ϕ(y)|
|x− y|

:= λ2 < ∞. (3.12)
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Remark 3.1 When W is the graph of a C1 function φ : Rp → Rm−p with ‖φ‖C1 < ∞. One
can choose ϕ : Rm → Rm such that

ϕ(x, y) = (x, y − φ(x)) for all x ∈ Rp, y ∈ Rm−p.

In this case, a direct computation yields

min

1

2
,

1√
1 + 4‖φ‖2C1

 ≤ λ1 ≤ λ2 ≤
√

2 + 2‖φ‖2C1 .

Introducing the constant which approximately measures the set g−1
(
Bm(W, ε)

)
⊆ [0, 1]d in

terms of Komolgorov ε-entropy

0 ≤ Λε := min

{
(4`(ε))d · 2H`(ε)

(
g−1(Bd(W,ε))

∣∣Rd)
, 1

}
, (3.13)

we prove the following result.

Theorem 3.2 Assume that p + d ≥ m. Then for every ε > 0 sufficiently small such that
Ψg (γW · ε) ≤

√
d, it holds

N g
W (ε) ≤ CΛε ·

(
1

Ψg (γW · ε)

)m−p
(3.14)

with the constant C = 2d+m−p−1d!dd+ p−m
2 .

Proof. The proof is divided into several steps:

1. Fix 0 < ε <
λ2

λ1 + λ2
· r, for every δ > 0 such that

ωg

(√
dδ
)
≤ λ1ε

λ2
and ε+ ωg(δ) < r (3.15)

we divide [0, 1]d into (Kδ)
d closed cubes ι of side length `δ =

1

Kδ
≤ δ with Kδ =

⌊
1

δ

⌋
+ 1

and set

Iδ =
{
ι ∈
{

1, . . . ,
(
Kδ

)d}
: int( ι) ∩ g−1

(
Bd(W, ε)

)
6= ∅
}
, Oδ =

⋃
ι∈Iδ

ι. (3.16)

From (2.7) and ε+ ωg(δ) < r, one has

g( ι) ⊆ Bm(W, ε) +Bm(0, ωg(δ)) ⊆ Bm(W, r) for all ι ∈ Iδ.

and this implies that g(Oδ) ⊆ Bm(W, r). Therefore, one can define the function composition
g̃ : Oδ → Rm such that

g̃(x) = ϕ(g(x)) for all x ∈ Oδ. (3.17)

Since dist(g(x),W ) ≥ ε for all x ∈ ∂Oδ\∂[0, 1]d, it holds

inf
x∈∂Oδ\∂[0,L]d

dist (g̃(x), ϕ(W )) ≥ inf
|x−y|≥ε

∣∣ϕ(x)− ϕ(y)
∣∣ ≥ λ1ε. (3.18)

In the next two steps, we will approximate g̃ by a function h̃δ : Oδ → Rm such that

6



(i). h̃δ is a piecewise continuous function with∥∥∥h̃δ − g̃∥∥∥
∞
≤ λ2 · ωg

(√
d`δ

)
, inf

x∈∂Oδ\∂[0,1]d
dist

(
h̃δ(x), ϕ(W )

)
> 0; (3.19)

(ii). The (d + p −m)-Hausdorff measure of Z h̃δϕ(W ) =
{
x ∈ Oδ : h̃δ(x) ∈ ϕ(W )

}
is bounded

by

Hd+p−m
(
Z h̃δϕ(W )

)
≤
(

22d−1d!dd+p−m
)
· `d+p−m
δ · 2

H`δ

(
g−1(Bd(W,ε))

∣∣∣Rd)
. (3.20)

2. For every ι ∈ Iδ, following the induction process in Lemma 2.3, we partition ι into 2d−1d!
polytopes ∆k

ι in Rd such that the set of vertices Vk
ι of ∆k

ι has (d+ 1) elements and is written
by

Vk
ι =

{
vk,jι ∈ Rd : j ∈ {1, 2, . . . , d+ 1}

}
for all k ∈

{
1, 2, . . . , 2d−1d!

}
.

Set md := min{d,m}. Observe that for any given ι ∈ Iδ, k ∈
{

1, 2, . . . , 2d−1d!
}

and s > 0,

there are md linearly independent vectors z1, z2 . . . , zmd in Rm with
∣∣∣zj − g̃(vk,jι )∣∣∣ < s for

j ∈ {1, 2, . . . ,md} such that the following subspace of Rm has dimension md + p−m

span
{
z1 − g̃

(
vk,d+1
ι

)
, z2 − g̃

(
vk,d+1
ι

)
. . . , zm+d − g̃

(
vk,d+1
ι

)}⋂
Rp × {0}.

Thus, up to an arbitrary small modification on g̃
(
vk,jι
)

, we can assume that for every ι ∈ Iδ,
k ∈

{
1, 2, . . . , 2d−1d!

}
, the subspace

span
{
g̃
(
vk,1ι

)
− g̃
(
vk,d+1
ι

)
, g̃
(
vk,2ι

)
− g̃
(
vk,d+1
ι

)
. . . , g̃

(
vk,mdι

)
− g̃
(
vk,d+1
ι

)}⋂
Rp × {0} (3.21)

has dimension md + p−m. Denote by ∇d =

α ∈ Rd : αj ≥ 0,

d∑
j=1

αj ≤ 1

, we have

∆k
ι =


d∑
j=1

αj · vk,jι +

1−
d∑
j=1

αj

 · vk,d+1
ι : α ∈ ∇d

 .

The piecewise linear continuous function h̃ι : ι → Rm is then defined as follows: for all

k ∈
{

1, 2, . . . , 2d−1d!
}

, x =

d∑
j=1

αj · vk,jι +

1−
d∑
j=1

αj

 · vk,d+1
ι with α ∈ ∇d, we set

h̃ι (x) := g̃
(
vk,d+1
ι

)
+

d∑
j=1

αj ·
[
g̃
(
vk,jι

)
− g̃

(
vk,d+1
ι

)]
. (3.22)

From (3.17) and (3.12), one estimates∣∣∣h̃ι (x)− g̃ (x)
∣∣∣ ≤ sup

|y−z|≤diam
(

∆k
ι

) |g̃(y)− g̃(z)|

≤ λ2 · sup
|y−z|≤

√
d`δ

|g(y)− g(z)| ≤ λ2 · ωg
(√

d`δ

)
.
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The function h̃δ : Oδ → Rm is defined by

h̃δ(x) = h̃ι(x) for all x ∈ ι, ι ∈ Iδ

is continuous and satisfies∣∣h̃δ(x)− g̃(x)
∣∣ ≤ λ2 · ωg

(√
d`δ

)
for all x ∈ Oδ.

Recalling (3.18) and (3.15), we have

inf
x∈∂Oδ\∂[0,L]d

dist
(
h̃δ(x), ϕ(W )

)
≥ λ1ε− λ2 · ωg

(√
d`δ

)
> 0. (3.23)

3. Let us show that h̃δ satisfies (ii). Fix ι ∈ Iδ, we consider the m× d matrix

Ak
ι =

[
g̃
(
vk,1ι

)
− g̃

(
vk,d+1
ι

)
, . . . , g̃

(
vk,dι

)
− g̃

(
vk,d+1
ι

)]
.

By the rank-nullity theorem, one has that rank(Ak
ι ) = md and{

α ∈ Rd : Ak
ι α = 0

}
= Yk

ι with dim
(
Yk
ι

)
= d−md.

Assume that Xk
ι ⊕ Yk

ι = Rd. The linear map α 7→ Ak
ι α is injective from Xk

ι to Rm and
dim

(
Xk
ι

)
= md. Thus, from (3.21), the following set is a (md+p−m)-dimensional hyperplane

Γkι :=
{
α ∈ Xk

ι : Ak
ι α ∈ Rp × {0} − g̃

(
vk,d+1
ι

)
⊂ Rp × Rm−p

}
.

For every k ∈
{

1, 2, . . . , 2d−1d!
}

, we set

∇dk :=

α ∈ ∇d : h̃ι

 d∑
j=1

αj · vk,jι +

1−
d∑
j=1

αj

 · vk,d+1
ι

 ∈ ϕ(W ) ⊂ Rp × {0}

 .

From (3.22), it holds

∇dk =

α ∈ ∇d : g̃
(
vk,d+1
ι

)
+

d∑
j=1

αj ·
[
g̃
(
vk,jι

)
− g̃

(
vk,d+1
ι

)]
∈ ϕ(W )


=

α ∈ ∇d :

d∑
j=1

αj ·
[
g̃
(
vk,jι

)
− g̃

(
vk,d+1
ι

)]
∈ ϕ(W )− g̃

(
vk,d+1
ι

)
⊆

{
α ∈ Rd : Ak

ι α ∈ Rp × {0} − g̃
(
vk,d+1
ι

)}
= Yk

ι + Γkι .

Observe that Yk
ι + Γkι is a (d + p − m)-dimensional hyperplane. Again recalling (3.22), we

obtain

{
x ∈ ∆k

ι : h̃ι(x) ∈ ϕ(W )
}

=


d∑
j=1

αj · vk,jι +

1−
d∑
j=1

αj

 · vk,d+1
ι : α ∈ ∇dk
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, and

Hd−m+p
({
x ∈ ∆k

ι : h̃ι(x) ∈ ϕ(W )
})

≤

(
sup

j∈{1,...,d}

∣∣∣vk,jι − vk,d+1
ι

∣∣∣)d−m+p

· Hd−m+p
(
∇dk
)

≤
(√
d`δ
)d−m+p · Hd−m+p

(
∇dk
)
≤ (d`δ)

d−m+p.

Thus, for all ι ∈ Iδ, it holds

Hd−m+p
(
Z h̃ιϕ(W )

)
≤

2d−1d!∑
k=1

Hd−m+p
({
x ∈ ∆k

ι : h̃ι(x) ∈ ϕ(W )
})

≤ 2d−1d!(d`δ)
d−m+p.

By the concept of ε-entropy in Definition 2.2, we have

g−1
(
Bm(W, ε)

)
⊆

J⋃
j=1

Dj , J ≤ 2
H`δ

(
g−1(Bm(W,ε))

∣∣∣Rd)
,

for some Dj ⊂ Rd with diam(Dj) ≤ 2`δ. For any j ∈ {1, . . . , J}, it holds

#{ι ∈
{

1, . . . ,
(
Kδ

)d}
: int( ι) ∩Dj 6= ∅} ≤ 2d.

Hence,

# (Iδ) ≤ min

2d · 2
H`δ

(
g−1(Bm(W,ε))

∣∣∣Rd)
,
(
Kδ

)d
=

(
1

`δ

)d , (3.24)

and this yields (3.20) by

Hd+p−m
(
Z h̃δϕ(W )

)
≤

∑
ι∈Iδ

Hd−m+p
(
Z h̃ιϕ(W )

)
≤ # (Iδ) · 2d−1d!(d`δ)

d−m+p. (3.25)

4. To complete the proof, we first approximate g by the continuous function gδ : Oδ 7→ Rm
which is defined by

gδ(x) = ϕ−1(h̃δ(x)) for all x ∈ Oδ.

From (3.19), it holds

|gδ(x)− g(x)| =
∣∣∣ϕ−1(h̃δ(x))− ϕ−1(g̃(x))

∣∣∣ ≤ |h̃δ(x)− g̃(x)|
λ1

≤ λ2

λ1
· ωg

(√
d`δ

)
,

and

inf
∂Oδ\∂[0,L]d

dist(gδ(x),W ) = inf
∂Oδ\∂[0,1]d

dist
(
ϕ−1(h̃δ(x)), ϕ−1(ϕ(W ))

)
≥ 1

λ2
· dist

(
h̃δ(x), ϕ(W )

)
> 0.

Since dist (g(x),W ) ≥ ε for all x ∈
(
[0, 1]d\Oδ

)
, we can extend gδ to [0, 1]d such that gδ is

still continuous with ‖gδ − g‖∞ ≤
λ2

λ1
· ωg

(√
d`δ

)
and gδ(x) does not belong to W for every

9



x ∈ [0, 1]d\Oδ. Thus, (3.25) and (3.24) yield

Hd+p−m (ZgδW ) = Hd+p−m ({x ∈ Oδ : gδ(x) ∈W})

= Hd+p−m
({
x ∈ Oδ : h̃δ ∈ ϕ(W )

})
= Hd+p−m

(
Z h̃δϕ(W )

)
≤ 2d−1d!dd−m+p

`m−pδ

·min

2d`dδ · 2
H`δ

(
g−1(Bd(W,ε))

∣∣∣Rd)
, 1

 .

Recalling (2.7) and (2.8), we choose δ =
1√
d
· Ψg

(
λ1ε

λ2

)
such that ωg

(√
dδ
)
≤ λ1ε

λ2
, the

condition (3.15) on δ holds, and

‖gδ − g‖∞ ≤
λ2

λ1
· ωg

(√
d`δ

)
≤ ε,

and
1

2
√
d
·Ψg

(
λ1ε

λ2

)
=

δ

2
≤ `δ =

1⌊
1

δ

⌋
+ 1

≤ δ =
1√
d
·Ψg

(
λ1ε

λ2

)
.

Hence, (3.11)-(3.13) yields (3.14) and the proof is complete.

Remark 3.3 In addition, if g ∈ Cα([0, 1]d,Rm) is Hölder continuous with exponent α ∈ (0, 1]
then from (2.9) it holds

Ψg (γW · ε) ≥
(
γW · ε
‖g‖C0,α

) 1
α

for all ε ≥ 0.

Recalling (3.13)-(3.14), we obtain Theorem 1.1 with CW =
(

2d+m−p−1dd+ p−m
2 d!

)
·
(

1

γW

)m−p
α

.

To conclude this section, let us provide an example to show that the blow up rate
(

1
ε

)m−p
α

with respect to ε is the best bound in terms of power function in the case d = m = 1, p = 0,
W = {0}, and α = 1.

Example 3.4 Consider the Lipschitz function g : [0, 1] → R with the Lipscthiz constant 1
such that

g(x) =

∞∑
n=1

un(x) · χ[sn,sn+1](x) with s1 = 0, sn =

n−1∑
j=1

2−j for all n ≥ 2.

Here, the function un : [0, 1]→ R is defined as follows: un = 0 on [0, 1]\(sn, sn+1) and for all
x ∈ [sn, sn+1]

un(x) = 2−(n2+n) ·
2n

2−1∑
k=0

u
(

2n
2+n ·

[
(x− sn)− k2−(n2+n)

])
· χ

[sn+k2−(n2+n),sn+(k+1)2−(n2+n)]

10



with

u(x) =

(
1

4
−
∣∣∣∣x− 1

4

∣∣∣∣) · χ[0,1/2] +

(∣∣∣∣x− 3

4

∣∣∣∣− 1

4

)
· χ[1/2,1].

Given any ε ∈
[
2−(n+1)2−(n+1), 2−(n2+n)

[
, for any h ∈ C([0, 1],R) with ‖h− g‖C0([0,1]) ≤ ε, we

have

H0
(
Zh{0}

)
= #{x ∈ [0, 1] : h(x) = 0} ≥ #{x ∈]sn, sn+1[: un(x) = 0} ≥ 2n

2 ≥
(

1

ε

) 1
1+o(ε)

with lim
ε→0+

o(ε) = 0. Thus,

N g
{0}(ε) = inf

‖h−g‖C0≤ε
H0
(
Zh{0}

)
≥
(

1

ε

) 1
1+o(ε)

,

and the blow up rate
(

1
ε

)m−p
α = 1

ε in Theorem 1.1 is optimal in terms of power function in the
case d = m = 1, p = 0 and α = 1. In this scalar case, one can follow the same construction to
show that the rate is optimal for α ∈ (0, 1).

For the multi-dimensional cases (d ≥ 2), the blow up rate
(

1
ε

)m−p
α in Theorem 1.1 should be

still optimal in terms of power function but the situation becomes considerably more technical.
We leave this open.

4 A quantitative bound on the total number of shock curves

In this section, we shall use Theorem 3.2 to prove Theorem 1.2. In general, the scalar con-
servation laws (1.3) do not possess classical solutions since discontinuities arise in finite time
even if the initial data are smooth. Hence, it is natural to consider weak solutions in the sense
of distributions that, for sake of uniqueness, satisfy an entropy criterion for admissibility

u(t, x−) ≥ u(t, x+) for a.e. t > 0, x ∈ R.

Under the convexity assumption (1.4), it is well known (see e.g. in [8]) that for every ū ∈
L∞(R) ∩ L1(R), the Cauchy problem (1.3) with u(0, ·) = ū admits a unique entropy solution
u(t, x) which satisfies the Oleinik’s estimate

u(t, y)− u(t, x) ≤ 1

λt
· (y − x) for all t > 0, y > x.

Moreover, the solution is continuous except on the union of an at most countable set of
Lipschitz continuous curves (shocks). To be precise, we recall the definition and theory of
generalized characteristic curves associated to (1.3). For a more in depth theory of generalized
characteristics, we direct the readers to [10].

Definition 4.1 A Lipscthiz continuous curve ξ(t) defined on an interval [0,∞) is called a
generalized characteristic if for a.e. t in the interval

ξ̇(s) ∈
[
f ′(u(s, ξ(s)+)), f ′(u(s, ξ(s)−))

]
. (4.26)

Moreover, we say that

11



• ξ on [a, b] is genuine if u(s, ξ(s)+) = u(s, ξ(s)−) for a.e. t ∈ [a, b].

• ξ on an interval [t̄, σ) for some t̄ < σ ≤ +∞ is a shock if

u(t, ξ(t)−) > u(t, ξ(t)+) for all t ∈ [t̄, σ).

• A point (t̄, x̄) ∈ (0,∞)×R is called a shock generation point if the forward characteristic
through (t̄, x̄) is a shock, while every backward characteristic through (t̄, x̄) is genuine.

The existence of backward (forward) characteristics was studied by Fillipov. As in [10], the
speed of the characteristic curves are determined and genuine characteristics are essentially
classical characteristics.

Proposition 4.1 Let ξ : [a, b] → R be a generalized characteristic curve of (1.3), associated
with an entropy weak solution u. Then for almost every time t ∈ [a, b], it holds that

ξ̇(t) =


f ′(u(t, ξ(t))) if u(t, ξ(t)+) = u(t, ξ(t)−) ,

f(u(t, ξ(t)+))− f(u(t, ξ(t)−))

u(t, ξ(t)+)− u(t, ξ(t)−)
if u(t, ξ(t)+) < u(t, ξ(t)−) .

(4.27)

In addition, if ξ is genuine on [a, b], then (t, ξ(·)) is a straight line and the solution u is
constant along this line.

Given (t, x) ∈ (0+∞)×R, all backward characteristics ξ are confined between a maximal and
minimal backward characteristics, denoted by ξ+

(t,x) and ξ−(t,x). Moreover, we recall properties of
generalized characteristics, including the non-crossing property of two genuine characteristics.

Proposition 4.2 Let u be an entropy weak solution to (1.3). Then for any (t, x) ∈]0,+∞[×R,
the followings hold:

(i) The maximal and minimal backward characteristics ξ±(t,x) are genuine.

(ii) There is a unique forward characteristic, denoted by ξ(t,x), which passes though (t, x). If
u(t, ·) is discontinuous at a point x, then

u
(
τ, ξ(t,x)(τ)−

)
> u

(
τ, ξ(t,x)(τ)+

)
for all τ ≥ t .

(iii) Two genuine characteristics may intersect only at their endpoints.

From the above proposition, one can easily obtain the following lemma.

Lemma 4.2 For any given initial data v̄ ∈ C2(R) with supp(v̄) ⊆ [−R,R] such that

#
{
x ∈ [−R,R] : [f ′(v̄)(x)]′′ = 0

}
< ∞ (4.28)

The total number of shock curves of the entropy weak solution v of (1.3) with u(0, ·) = v̄ is at
most the total number of inflection points of f ′(v̄).
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Proof. From Proposition 4.2, we have that the total number of shock curves of v is bounded
by the total number of shock generation points. Given a shock generation point (t̄, x̄), let
d : R→ R be a C2 such that

d(β) = β + f ′(v̄(β)) · t̄ for all β ∈ R.

Two cases are considered:

• If v(t̄, x̄−) = v(t̄, x̄+) then let ξ(t̄,x̄)(·) be the backward characteristic starting from (t̄, x̄).
Set β̄ := ξ(t̄,x̄)(0). From ([10, Lemma 5.2]), it holds

d′(β̄) = 0 =⇒ [f ′(v̄)]′(β̄) = − 1

t̄
. (4.29)

For every δ > 0, there exist x̄− δ < x−δ < x̄ < x+
δ < x̄+ δ such that v(t̄, ·) is continuous

at x±δ . By the non-crossing property (iii) in Proposition 4.2 and the continuity of v̄(t̄, ·)
at x̄, we have

ξ(t̄,x−δ )(0) := β−δ < β̄ < β−δ := ξ(t̄,x+δ )(0), lim
δ→0+

β−δ = lim
δ→0+

β+
δ = β̄.

and
x−δ = d(β−δ ) < d(β̄) = x̄ < d(β+

δ ) = x+
δ .

This implies that there exist β̃−δ ∈
(
β−δ , β̄

)
and β̃+

δ ∈
(
β̄, β+

δ

)
such that

d′
(
β̃±δ
)
> 0 =⇒ [f ′(v̄)]′

(
β̃±δ
)
> − 1

t̄
.

Hence, (4.29) and the assumption (4.28) imply that β̄ is an inflection point of f ′(v̄).

• Otherwise, if v(t̄, x̄−) > v(t̄, x̄+) then (t̄, x̄) is a center of a centered compression wave,
i.e., there are two genuine backward characteristic ξ1 and ξ2 through (t̄, x̄) so that every
backward characteristic through (t̄, x̄) contained in the funnel confined between ξ1 and
ξ2. In this case, one has that

[f ′(v)]′(β) = − 1

t̄
for all β ∈ (ξ1(0), ξ2(0))

and this contradicts to (4.28).

Therefore, the total number of shock generation points is at most the total number of inflection
points of f ′(v̄).

From the above lemma and Theorem 3.2, we now extend Theorem 1.2 to the case of C3-smooth
f . In order to do so, given constants R, V > 0, we denote by

Φf,V,R(ε) = 212 ·max

45

(
1 +

1

V

)∥∥f∥∥
C3(−V2 ,

V
2 ),

4βε

ΨV

f
(3)

(−V2 ,
V
2 )

(βε)

 (4.30)

with βε =
5λε3

29V 4R3
and ΨV

f (3)
being the inverse of the minimal modulus of a continuity of the

restriction of f (3) to the interval (−V
2 ,

V
2 ) which is defined in (2.8).
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Theorem 4.3 Given constants R, V > 0, assume that f ∈ C3(R) and ū ∈ L1(R) satisfies
(1.5). Then, for every ε > 0 sufficiently small, there exists v̄ ∈ C2(R) with Supp(v̄) ⊆
[−2R, 2R] and ‖v̄ − ū‖L1 ≤ ε, such that the entropy weak solution v = v(t, x) of (1.3) with
initial datum v(0, ·) = v̄ satisfies

[Total number of shock curves of v] ≤
Φf,V,R(ε)

λ
· R

4V 5

ε4
+ 4. (4.31)

Proof. 1. Let ū ∈ L1(R) ∩ L∞(R) be such

Supp(ū) ⊆ [−R,R] and Tot.Var.(ū, (−∞,∞)) ≤ V.

For every δ > 0, we first approximate ū by the smooth function uδ ∈ C3(R) with Supp(uδ) ⊆
[−R− δ,R+ δ] which is defined by

uδ(x) := [ū ∗ ρδ](x) =

∫ ∞
−∞

ū(y)ρδ(x− y)dy for all x ∈ R

where the mollifier

ρδ(x) =
315

256 · δ
·
(

1− x2

δ2

)4

· χ[−δ,δ](x)

is a C4(R) function with Supp(ρδ) ⊆ [−δ, δ] and

∫ ∞
−∞

ρδ(x)dx = 1. From [1, Lemma 3.24], the

L1-distance between ū and uδ is bounded by

‖uδ − ū‖L1(R) ≤ δ · Tot.Var.(ū, (−∞,∞)) ≤ V δ. (4.32)

Moreover, a direct computation yields

‖uδ‖L∞(R) ≤ ‖u‖L∞(R) · ‖ρδ‖L1(R) = ‖u‖L∞(R) ≤
1

2
· Tot.Var.(ū, (−∞,∞)) ≤ V

2
,

∥∥u′δ∥∥L∞(R)
≤ ‖u‖L∞(R) ·

∥∥ρ′δ∥∥L1(R)
≤ V

2
·
∥∥ρ′δ∥∥L1(R)

=
315V

256 · δ
,

and∥∥u′′δ∥∥L∞(R)
≤ V

2
·
∥∥ρ′′δ∥∥L1(R)

=
1215V

98
√

7 · δ2
,

∥∥u′′′δ ∥∥L∞(R)
≤ V

2
·
∥∥ρ′′′δ ∥∥L1(R)

<
5085V

224 · δ3
.

Consider the continuous function hδ := [f ′(uδ)]
′′ with Supp(hδ) ⊆ [−R−2δ,R+2δ]. For every

x, y ∈ R, we can roughly estimate∣∣hδ(y)− hδ(x)
∣∣ =

∣∣∣[f ′′′(uδ)[u′δ]2 + f ′′(uδ)u
′′
δ

]
(y)−

[
f ′′′(uδ)[u

′
δ]

2 + f ′′(uδ)u
′′
δ

]
(x)
∣∣∣

≤
45V (1 + V )

∥∥f∥∥
C3(−V2 ,

V
2 )

2δ3
· |x− y|+

∥∥u′δ∥∥2

∞ ·
∣∣f (3)(uδ(x))− f (3)(uδ(y))

∣∣
≤

45V (1 + V )
∥∥f∥∥

C3(−V2 ,
V
2 )

2δ3
· |x− y|+ 8V 2

5δ2
· ωf (3)

(
5V

4δ
· |x− y|

)
and (2.7) yields

ωhδ(τ) ≤
45V (1 + V )

∥∥f∥∥
C3(−V2 ,

V
2 )

2δ3
· τ +

8V 2

5δ2
· ωf (3)

(
5V τ

4δ

)
for all τ ≥ 0.
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Recalling (2.8), we then derive an upper bound on the inverse of the minimal modulus of a
continuity of hδ

Ψhδ(s) ≥ min

 δ3s

45V (V + 1)
∥∥f∥∥

C3(−V2 ,
V
2 )
,

4δ

5V
·ΨV

f
(3)

(−V2 ,
V
2 )

(
5δ2s

16V 2

) (4.33)

where ΨV
f (3)

is the inverse of the minimal modulus of continuity of the restriction of f (3) on

(−V/2, V/2).

On the other hand, applying Theorem 3.2 for m = d = 1, p = 0, W = {0} ∈ R, and Λε ≤ 1,
we get that for any given σ > 0 sufficiently small, there exists a continuous function h̃σ,δ such
that

Supp(h̃σ,δ) ⊆ (−R− 2δ,R+ 2δ),
∥∥h̃σ,δ − hδ∥∥C0(R)

≤ σ (4.34)

and

#
{
x ∈ (−R− 2δ,R+ 2δ) : h̃σ,δ(x) = 0

}
≤ 4(R+ δ)

Ψhδ(σ)
. (4.35)

2. Set R1 := max{R+ δ, sup{x ∈ R : h̃σ,δ} 6= 0} ∈ (R+ δ,R+ 2δ) and

α1 =

∫ R1

−R−2δ
h̃σ,δ(z)dz, α0 =

∫ R1

−R−2δ

(∫ y

−R−2δ
h̃σ,δ(z)dz

)
dy.

We approximate f ′(uδ) by a function Fσ,δ defined by

Fσ,δ(x) =



f ′(0), x ∈ R\[−R− 2δ,R+ 2δ],

f ′(0) +

∫ x

−R−2δ

(∫ y

−R−2δ
h̃σ,δ(z)dz

)
dy, x ∈ (−R− 2δ,R1),

f ′(0) + α0 ·
(
R+ 2δ − x
R+ 2δ −R1

)3

+Gθ(x)χ[R1,R1+θ], x ∈ [R1, R+ 2δ),

(4.36)
with
Gθ(x) = (x−R1)(x−R2)3 ·

(
α2

(R1 −R2)3
+ (x−R1) ·

(
α3

2(R1 −R2)3
− 3α2

(R1 −R2)4

))
,

α2 = α1 +
3β1

R+ 2δ −R1
, α3 =

−6β1

R+ 2δ −R1
, R2 = R1 + θ,

for some θ > 0 sufficiently small. One computes that

Gθ(R1) = Gθ(R2) = G′θ(R2) = G′′θ(R2) = 0, G′θ(R1) = α2, G′′θ(R1) = α3,

and this yields
Fσ,δ(R1±) = f ′(0) + α0, F ′σ,δ(R1±) = α1, F ′′σ,δ(R1±) = h̃σ,δ(R1) = 0,

Fσ,δ(R+ 2δ) = F ′σ,δ(R+ 2δ) = F ′′σ,δ(R+ 2δ) = 0.

Hence, Fσ,δ is a C2-function. Moreover, observe that the number of inflection points of Fσ,δ
in [R1, R+ 2δ] is less than 5, we have from (4.35) that

#{x ∈ R : x is an inflection point of Fσ,δ} ≤
4(R+ δ)

Ψhδ(σ)
+ 4. (4.37)

15



Recalling (4.34), we estimate∣∣Fσ,δ(x)− f ′(uδ)(x)
∣∣ ≤ ∫ R1

−R−2δ

(∫ y

−R−2δ

∣∣h̃σ,δ(z)− hδ(z)∣∣dz) dy
≤ (R1 +R+ 2δ)2

2
· σ for all x ∈ (−∞, R1].

This also implies that

|β1| =
∣∣Fσ,δ(R1)− f ′(0)

∣∣ =
∣∣Fσ,δ(R1)− f ′(uδ)(R1)

∣∣ ≤ (R1 +R+ 2δ)2

2
· σ.

Since
∣∣Gθ(x)

∣∣ ≤ θ · (4|α2|+
|α3|

2

)
for all x ∈ [R1, R1 + θ], one gets from (4.36) that

∣∣Fσ,δ(x)− f ′(uδ)(x)
∣∣ =

∣∣Fσ,δ(x)− f ′(0)
∣∣ ≤ (R1 +R+ 2δ)2

2
· σ + θ ·

(
4|α2|+

|α3|
2

)
for all x ∈ [R1,∞). Thus, we can choose θ > 0 sufficiently small such that

‖Fσ,δ − f ′(uδ)‖L∞(R) ≤ 2(R+ 2δ)2 · σ.

3. Let vσ,δ : R→ R be a C2 function such that

vσ,δ(x) =
(
f ′
)−1(

Fδ(x)
)

for all x ∈ R.

By the uniform convexity of f in (1.4), we get

|vσ,δ(x)− uδ(x)| ≤ 1

λ
·
∣∣Fσ,δ(x)− f ′(uδ)(x)

∣∣ ≤ 2(R+ 2δ)2 · σ
λ

,

and (4.32) yields

‖vσ,δ − ū‖L1(R) ≤ ‖uδ − ū‖L1(R) + ‖vσ,δ − uδ‖L1(R) ≤ V δ +
4(R+ 2δ)3 · σ

λ
.

Given ε > 0, if we choose

δ =
ε

2V
and σ =

λε

23(R+ 2δ)3
,

then the function v̄ := vσ,δ has Supp(v̄) ⊆ [−2R, 2R] and ‖v̄ − ū‖L1(R) ≤ ε. In the case,
recalling (4.33), we have

Ψhδ(σ) = min

 λε4

2645V 4(V + 1)(R+ 2δ)3
∥∥f∥∥

C3(−V2 ,
V
2 )
,

2ε

5V
·ΨV

f
(3)

(−V2 ,
V
2 )

(
5λε3

29V 4(R+ 2δ)3

) .

Thus, (4.37) yields

#
{
x ∈ R : x is an inflection point of f ′[v̄]

}
≤ max


2845V 4(V + 1)(R+ 2δ)4

∥∥f∥∥
C3(−V2 ,

V
2 )

λε4
,

10V (R+ 2δ)

ε ·ΨV

f
(3)

(−V2 ,
V
2 )

(
5λε3

29V 4(R+2δ)3

)
+ 4

= 28 · V
5(R+ 2δ)4

λε4
·max

45

(
1 +

1

V

)∥∥f∥∥
C3(−V2 ,

V
2 ),

4βε

ΨV

f
(3)

(−V2 ,
V
2 )

(βε)

+ 4
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with βε =
5λε3

29V 4R3
. In particular, for 0 < ε ≤ RV

4
such that 2δ ≤ R, it holds

#
{
x ∈ R : x is an inflection point of f ′[v̄]

}
≤

Φf,V,R(ε)

λ
· R

4V 5

ε4
+ 4

with Φf,V,R(ε) defined in (4.30).

4. To complete the proof, recalling Lemma 4.2, we obtain that the total number of shock
curves in the weak entropy solution v of (1.3) with initial data u(0, ·) = v̄ is bounded as in
(4.31).

Remark 4.4 If we assume f ∈ C4(R) as in Theorem 1.2, then from (2.9) it holds that

ΨV
f (3)

(s) ≥ s∥∥f∥∥
C4(−V

2
,V
2

)

for all s > 0.

Thus, the function Φf,V,R is bounded by

Φf,V,R ≤ C := 21245 ·
(

1 +
1

V

)
· ‖f‖

C4
(
−V

2
,V
2

) (4.38)

and (4.31) yields (1.6).

Finally, in the spirit of approximation theory, we state the following corollary of Theorem 1.2.

Corollary 4.5 Under the same assumptions in Theorem 1.2, given an integer N > 4 and an
initial datum ū ∈ L1(R) satisfied (1.5), there exists v̄ ∈ C3(R) with supp(v) ⊆ (−2R, 2R) and

‖v̄ − ū‖L1(R) ≤ 23(45)1/4 ·
[
V + 1

λ
· ‖f‖

C4
(
−V

2
,V
2

)]1/4

· RV

(N − 4)1/4

such that the entropy weak solution v = v(t, x) of (1.3) with initial datum v(0, ·) = v̄ contains
at most N shocks.
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